The Development of the Kitchen Faucet Through Time

In this blog post, you’ll read:On average, a family is estimated to press the tap more than 40 times per day, based on a report from the KWC firm. Given how often it is used, choosing a kitchen faucet that is right for your kitchen style and lifestyle will last through the years is vital.

Table of Contents

The kitchen faucet is a widely used fixture in any kitchen. It has a long history of keeping water conveniently accessible for many homes.

On average, a family is estimated to press the tap more than 40 times per day, based on a report from the KWC firm. Given how often it is used, choosing a kitchen faucet that is right for your kitchen style and lifestyle will last through the years is vital.

Faucet History

The kitchen faucet has come a long way since its humble beginnings and is an essential part of any kitchen today.

The kitchen faucet has undergone many changes since it was first invented. In 1000 BC, the Ancient Romans used silver faucets.

When the Minoan Place of Knossos was discovered in 1700 BC, a terra cotta piping that pumped water into fountains was found. Since the kitchen was the central part of the home in the Middle Ages, almost everything revolved around it. The first screw-down tap mechanism wasn’t invented until 1845 by Gust and Chimes.

Compression faucets

In 1937, the first single-handed faucet that blended cold and hot water before it exited the “fixture” was invented by Alfred Moen. Many today get burns from a two-handle convectional faucet, one for cold and one for hot. Moen got the idea for his invention after burning his hands. He believed there needed to be a method to operate a faucet in the desired manner without using two different handles. From 1940 to 1945, Moen continued to design and refine his faucet before selling his first one in 1947. By 1959, all of Alfred Moen’s single-handed faucets were in almost every home.

single-handed faucet

Following Landis H. Perry’s creation of the first ball valve that combined the volume and blending for a simple seal in 1945, Alex Manoogian invented the Delta faucet in 1954. The Delta faucet was a hit; sales reached $1 million by 1958 because it included Moen and Perry’s combined ideas. Wolverine Brass created a ceramic disk in the 1970s that assisted in regulating the water flow. The disk has undergone a few changes since then to improve resistance and effectiveness.

Al moen

The kitchen faucet has also changed and evolved to match the changing times. Today, we can pull out sprays and electronic faucets made by various groups of inventors. The kitchen faucet has advanced so far in such a short period of time, which only proves it will do so in the future. Who knows what functions the kitchen faucet of the future will have?

Working Principle

The kitchen faucet is one of the most essential appliances in the kitchen. It is used to wash hands, cook food, and clean dishes. There are many different kitchen faucets, but they all use the same basic engineering principles.

Simple machines produce the force necessary to stop water from flowing. Fluid flow is used to regulate the water pressure. Turning the knob causes the screw to pull the rubber stopper out of the aperture’s path, creating a tiny opening through which water can enter. As water passes through the hole, the pipe’s internal pressure decreases. The screw operates in the opposite direction when the faucet is turned off, closing the aperture and halting the flow of water.

The Role of Pressure

The pressure of water in pipes is held at a higher pressure than the surrounding air pressure. This pressure difference causes water to come out of the faucet. Usually, this pressure is created due to the hydrostatic pressure gradient.

You can easily visualize hydrostatic pressure by thinking about swimming pools. Your ears usually hurt when you dive deep under water due to the sudden increase in pressure. Your ears will suffer more as you descend because of the increased pressure differential. We may all agree, I believe, that this relationship between depth and pressure is pretty accurate.

Here’s a quick refresher on the hydrostatic pressure equation:

P = ρgh

Here, you can see that P is the pressure, ρ is the density of the liquid (in our case, water), g is gravity, and h is the height of water above the point in question.

Let’s do a quick example calculation. The density of water is 999 kilograms per cubic meter, and gravity is about 9.81 meters per second squared on Earth. Suppose we have a cylinder of water that’s five meters tall. In that case, we can calculate the pressure at the bottom using the hydrostatic pressure equation:

999 kg/m3 × 9.81 m/s2 × 5 m = 49.0 kPa

Therefore, the pressure at the bottom of this cylinder of water is 49 kilopascals or 1000 Newtons per square meter.

It’s important to realize that pressure can be measured in kilopascals or newtons. Still, the density of water and gravity is always constant. This means that pressure is really just dependent on height.


For example, let’s say we have two points, A and B, at the same height, h. Because the density of water and gravity is always constant, the pressure at points A and B is also ongoing. However, if we have a small hole at point B, the water will flow through this hole and create a pressure drop. The pressure differential between point A and point B and the hole’s resistance affect how quickly the water flows through this hole.

In conclusion, the hydrostatic pressure gradient creates a pressure difference that causes water to flow out of a faucet. The size of the opening in the faucet determines the resistance flow, and the pressure difference determines the flow rate. If the pressure outside equals the pressure inside, the water will not flow. However, if the pressure outside exceeds the pressure inside, the water will flow out of the faucet.

I merely constructed it as follows.

PInside – POutside = (Rate of Flow)*(Resistance)

How Much Force?

How much pressure is needed to hold back the water? You can easily calculate this by multiplying the water’s pressure by the area of the open stopper. This is referred to as the standard equation:


Where F denotes the water’s force on the stopper, P denotes the water’s pressure, and A denotes the opening’s area. Since the stopper is stationary, the force of the water acting on it must be equal to the force of the stopper acting on the water.

For example, suppose the water pressure in a pipe is 30 psi and the area of the opening is 0.049 square inches (obtained by taking the radius of the opening squared and multiplying by pi). In that case, the force of the water on the rubber stopper is equal to 30 psi multiplied by 0.049 square inches, or 1.47 lb.

This equation may be used to calculate the required pressure for any size of aperture. Remember that the pressure units must be pounds per square inch (psi).

water pressure tap

How is a Faucet a Machine?

Faucets are machines that use a screw to reduce the force needed to hold back water. Faucets work by converting a torque (a twisting force) into a linear force. This provides a mechanical advantage that transforms a small input force into a potentially large output force.

For example, the slope of a wedge’s angle can be used to calculate its mechanical advantage. If the hypotenuse of a wedge is five inches long and one inch tall, its slope is 1/5. This means that for every inch the wedge moves horizontally, it will lift the object one-fifth of an inch. In this way, a wedge can be used to reduce the amount of force needed to lift an object.

However, using a wedge also means moving the object farther. For example, if an object needs to be lifted one inch, the wedge must be moved five inches horizontally.

Therefore, when using a faucet, it is crucial to consider both the required force and the distance the object needs to be moved. Doing so may determine how to make the most of a faucet’s mechanical advantage.

Faucet Types

For every type of home, there is a perfect faucet. Faucets now come in a vast array of designs, colors, shapes, and sizes to suit nearly any taste. Despite the seemingly infinite number of options, most faucets are divided into four categories: ball, disc, cartridge, and compression.

Ball faucets

Ball faucets have a single handle that moves up and down to control water pressure and side to side to regulate temperature. A ball inside the faucet controls a series of valves. As the handle is turned, the ball moves and aligns the valves to allow water to flow through. These faucets are relatively easy to maintain but may require more frequent repairs than other types due to their moving parts. Ball faucets are also susceptible to leaks.

ball faucet

Disc faucets

Disc faucets are identifiable by their single-lever control and vast, cylindrical body. These faucets control water temperature with two ceramic discs at the bottom of the chamber. As the lever is turned, the discs move to mix hot and cold water together. Disc faucets are generally low-maintenance and require infrequent repairs. However, it is best to trust a professional when they need to be repaired as the process can be delicate.

dis faucet

Cartridge faucets

Cartridge and compression faucets are often difficult to tell apart at a glance, but their inner workings differ significantly. Cartridge faucets have a single control handle and operate with a smooth, consistent feel. They require only a half-turn from the off position to fully on. Cartridge faucets are low-maintenance and more reliable than compression ones, but repairs can be tricky if problems arise.

cartridge faucet

Compression faucets

As the name suggests, compression faucets work by using a screw to push against a rubber washer and form a seal that shuts off water flow. These faucets have two handles, one for hot water and one for cold. Compression faucets are often less pressurized when turned on but become more so as they are closed. These faucets are the oldest on this list and can be found quickly and inexpensively. However, they tend to wear out quickly and may start leaking soon after purchase. Compression faucets also require more frequent repairs.

Compression faucets

Faucet Prices

Prices for faucets vary depending on the material, design, function, and mobility. The installation is also a factor to consider when determining the price. For example, “Low-flow aerators are frequently given out for free by water companies to their customers, or they are typically $1–$5 in home improvement stores.

As per the Kitchen Model Guide, the single-hole kitchen faucet prices can range from the low cost of US$30 to the high cost of more than US$2,000.

The double-hole kitchen faucet prices can range from a low cost of about US$25 to a high cost of more than US$2,000.

touch kitchen faucet

The prices of pull-down and pull-out kitchen faucets range from around US$40 to more than US$3,000.

The wall mount kitchen faucet prices can range from the low cost of approximately US$50 to high cost of more than US$1,500.

A bridge kitchen faucet costs from around $50 to more than $1,700. In the same way, the price of a waterfall kitchen faucet can range from less than $100 to more than $600.

The price of a vessel kitchen faucet varies greatly, from as little as $40 to more than $500.

And finally, the touchless and touch -on kitchen faucet prices can start from a low cost of about US$200 to a high cost of more than $2,500.

In the United States, installing a faucet typically costs roughly $243, according to Home Advisor. Depending on the factors mentioned above, your personal installation cost could be more or less.

vessel kitchen faucet

Get A Free Sample Now

Ask For A Water Control Solution Now

We do not only provide basin waste, but we can provide solutions for water control.

Get In Touch Now!

*We respect your confidentiality and all information is protected.